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An O(n/ 10.89) Primality Testing Algorithm* 

By Leonard Adleman and Frank Thomson Leighton 

Abstract. In this paper, we describe an 0(n'/'089) deterministic algorithm to decide primal- 
ity. The algorithm incorporates several recent results in complexity theory. 

1. Introduction. The problem of determining whether an integer is prime or 
composite in a polynomial amount of time on a deterministic machine is a 
well-known, unsettled problem in number theory and computational complexity 
theory. Miller [4] has shown that primality can be decided deterministically in 
O(log4n) steps assuming the Extended Riemann Hypothesis. Strassen and Solovay 
[9], Rabin [8], and Miller [4] have shown how to recognize composites in O(log3(n)) 

steps with a random algorithm. Thus, it is considered likely that primality can be 
decided deterministically in polynomial time. However, no such polynomial time 
algorithm is known. In fact, the best published upper bound on the amount of time 
needed to decide primality is O(nl/8+e) for any e > 0 (Pollard [6]). 

In this paper, we describe an O(n 1/(l +6Ve)+e) < O(n 1/10.89) algorithm to decide 

primality. The algorithm is largely an extension of Miller's [4] O(nl/7) algorithm 
but also incorporates several other recent results in complexity theory. In Section 2, 
we mention these results. The algorithm is described in Section 3 and its complex- 
ity is analyzed in Section 4. We conclude with some remarks in Section 5. 

2. Preliminaries. We commence with some standard definitions. If n= 

p, ...** p, then the Euler phi-function is 

+(n) = p VI (PI - 1) * * * pM,l(pM - 1) 
The Carmichaelfunction is 

X(n) = lcm(pv1'(p1 - 1), *.. *P, pm1(Pm- 1)). 

If X(n) I n - 1, then n is called a Carmichael number. In addition, we define n to be 
N-Carmichael-like if, for every m > 1 and every prime p > N, p m I X(n) => 

pm n - 1. Finally, we denote, by #qX1 the number of factors of q in x. For 
example, if n = p v** pv, then # n = v, for I < i < m. 

The validity of our algorithm relies heavily on several results from the literature. 
These results are included here as Lemmas 1-8. In each case, the reference given 
contains a proof of the lemma or some similar result. Often the results cited in the 
lemmas are slight generalizations of the original results. 
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LEMMA 1 (POLLARD [7]). For any - > 0, there is a deterministic algorithm which, 
given n, a > 0, finds all prime factors p of n with p < na in O(na/2+e) time. 

LEMMA 2 (NORTON [5]). For any - > 0, there exist constants C and N such that, for 
every n and every prime q > N with q I +(n), there is a qth nonresidue of n less than 
Cne. 

LEMMA 3 (BURGESS [1]). For any e > 0, there is a constant C such that, for every 
pair of primes p and q with q I p -1, there is a qth nonresidue of p less than 
CP(l/4V-e)+,e 

LEMMA 4 (BURGESS [1]-[3]). For any - > 0, there is a constant C such that, for 
every pair of primes p # q, there is an a < C(pq)(1/4Ve)+e such that (a/pq) = -1. 

LEMMA 5 (MILLER [4]). If p I n, qm IP - 1 and qm tn- Ifor some m > 1, and a 
is a qth nonresidue of p, then a n - 1 I mod n. 

LEMMA 6 (MILLER [4]). If p 2 1 n, and a is a pth nonresidue of p2, then a n-I 

1 mod n. 

LEMMA 7 (MILLER [4]). If p I n and p' n for two primes p and p', #q(P - 1) > 

q(P' - 1) > 0 for some prime q, a is a qth nonresidue of p, and X(n) I (n - I)s for 
some s, then either a or (a(n- )s/qk mod n) - 1 has a nontrivial greatest common 
divisor with n for some 1 < k < #q([n - I]s). 

LEMMA 8 (MILLER [4]). If p I n and p' I n for two different primes p and p', 

#2(P- 1) = #2(P' -1), (a/pp') = -1, and X(n) I (n - I)s, then either a -or 
(a(n - 1)s/2k mod n) -1 has a nontrivial greatest common divisor with n for some 
1 < k < #2([n - I]s). 

3. The Algorithm. Given any small - > 0, let the constant N be as defined in 
Lemma 2. In addition, let {Pp1, ... Pr) be the set of primes less than N. Then 
define Algorithm Ae as follows. 

ALGORITHM Ae: 

Step (1): Input n. 
Step (2):If n < N, check if n E {p1,... ,Pr). If so, output "prime" and halt. If 

not, output "composite" and halt. 

Step (3): Find all prime factors of n - 1 which are less than n2/(1 +6e ). Let these 
factors be q,, . . . , q 

Step (4):Carry out (i) and (ii) for each 2 < a < max(N, n1/(1+6Ve)). If at any 
stage (i) or (ii) holds, output composite and halt. 
(i)a1 !- 1 modn. 
(ii)((a(fn 1)S/qk mod n) - 1, n) # 1, n for 1 < k < #q([n - 1]s), q E 

{ql. . . . , qtp1, .. *. * Pr}) and s = pb* ... p,b" with bi = [log n/logpj]. 
Step (5):Check if (S2 -51 + Is + S2 + (4n-2)s1s2, n) # 1, n for any sl = 

'i ... p,r` and 52 = Pi"* p, with 0 < ui, vi < [log n/logp,]. If so, 
output "composite" and halt. 

Step (6):Output "prime" and halt. 
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It is easily verified that if n is prime, then Ae outputs "prime" and halts. It is also 
clear (noting Lemma 1) that Ae runs in time O(n1/(1+6V)+e) O(n1"1089) for 
sufficiently small e. It remains to be shown that if n is composite, then Ae outputs 
"composite" and halts. In order to accomplish this, we divide the analysis up into 
several cases depending on the structure of n. The following is an outline of the 
subcase structure of the analysis. The portion of the total running time actually 
required to handle each subcase is also included in the outline. 

Outline of Subcases. 
I. n is not N-Carmichael-like O(ne). 
II. n is N-Carmichael-like. 

A. n is not square-free O(n'). 
B. n is the product of distinct primes. 

1. n is the product of two primes O(ne). 

2. n is the product of four or more primes O(n l/(8e)+e) < O(n1/13). 

3. n is the product of three primes. 
a. n is not Carmichael O(n1/(8Ve)+e) < O(n1/13). 

b. n is Carmichael O(n1/(1+6Ve)+e) < 0(n1/1089). 

4. Complexity Analysis. We now analyze the complexity of each case outlined at 
the end of the previous section. Note that if n < N, then Step (2) of the algorithm 
correctly decides the primality of n in constant time. Thus, we henceforth assume 
that n > N. 

Case I. n is not N-Carmichael-like. 
By definition, if n is not N-Carmichael-like, then there exist an m > 1 and a 

prime p > N such that qm I X(n) but qm n - 1. Assume that qm I p- 1 for some 
prime p I n. Then, by Lemma 2, there is a qth nonresidue a of p less than 
Cpe < Cne. By Lemma 5, a'- l m 1 mod n and this case can be handled (by Step 
(4)(i)) in O(ne) time. 

If qm tP - 1 for every prime p I n, then qm I X(n) implies q =p for somep2 I n. 
As before, Lemmas 2 and 6 can be used to show that this case can be handled (by 
Step (4)(i)) in O(ne) time. 

Case II: n is N-Carmichael-like. 
Subcase A. n is not square-free. 
If n is not square-free, thenp 2 1 n for some primep. Since n is N-Carmichael-like, 

p < N. Thus, n is found to be composite (by Step (4)(i)) in O(ne) time. 
Subcase B. n is the product of distinct primes. 
Subcase 1. n is the product of two primes. 
Let n = pq. Since n is N-Carmichael-like, p -1 1 (n - I)s for some s composed 

solely of prime factors less than N. Thus, 

p - I I (pq - I)s =p - 11 [(p - 1)q + q - l]s =p - I I (q - I)s. 

Similarly, q - 1 (p - I)s' for some s' composed solely of prime factors less than 
N. Thus, p - 1 = xs, and q - 1 = xs2 for some selection of s, and 52 where 

s1=PuI.. P;ipl s2=p"P.l .pr and 1 <ui, vi2< [log n/logp,l for 1 <i?r. 
Thus, n = pq = (xs1 + 1)(xs2 + 1) = S1S2X2 + (S1 + s2)x + 1. Using the quadratic 
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formula, 

- s2 + Vsl + 2s1s2 + s2 + 4(n - )S1S2 
X =s 2s1s2 

1 -s1 + S2 + 522 + (4n - 2)s1s2 
XP = S1X + 1 = 2s2 

=>(S2-s1 + s2+s2+(4n-2)sIs2, n) ,n. 

Since there are at most (log n)2r ? O(n') combinations of s1 and s2 to check, this 
case may be disposed of (by Step (5)) in O(ne) time. 

Subcase 2. n is the product of four or more primes. 
Let p and q be the two smallest prime factors of n. Then pq < n /2. Since n is 

square-free, p =# q. If #2(P - 1) = #2(q - 1), we know by Lemma 4 that there is a 
number a less than C(pq)1/4e +e < O(n /"8e +) such that (a/pq) = -1. Since 
X(n) I (n - I)s for s = p pb .. pb, with b, = [log n/log piI (by N-Carmichael-like 
property), we know by Lemma 8 that a or (a(n - )s/2k mod n) - 1 has a nontrivial 
GCD with n for some 1 < k < #2[(n - I)s]. There are at most O(log n) possibilities 
for k, so this case is handled (by Step (4)(ii)) in O(nl/8Ve/ +e) time. 

If #2(P - 1) # #2(q - 1), then (WLOG) #2(P - 1) > #2(q - 1). Using a similar 
argument, it is easy to show by Lemmas 3 and 7 that this case may also be handled 
(by Step (4)(ii)) in 0(n1/8V'e +) time. 

Subcase 3. n is the product of three primes. 
Let n = pqr with p < q < r. There are two further subcases to consider. 
Subcase a. n is not Carmichael. 
If r > n1 /2, then pq < n 1/2 and we may apply the arguments of the case when n 

has four or more factors to dispatch this possibility (by Step (4)(ii)) in O(n 1/8V +e 

time. Thus, we may assume that r < n /2. Since n is not Carmichael, there is a 
prime q' and an m > 1 such that (WLOG) q'm r - 1 but q'm n- 1. Since n is 
N-Carmichael-like, q' < N. Since n - 1 = pqr - 1 = (p - 1)(q- 1)(r - 1) + 
(q - 1)(r - 1) + (p- 1)(r - 1) + (p - 1)(q - 1) + (p - 1) + (q - 1) + (r - 1), 
this means that qm P - 1 or q'm q - 1. (WLOG) assume q'm tp - 1. Then 

q(r -1) > #q'(p - 1). Applying Lemmas 3 and 7 together with the knowledge 
that r < n 1/2, we find that this case can be handled (by Step (4)(ii)) in O(n 1/8e +e 

time. 
Subcase b. n is Carmichael. 
If n is Carmichael, then p - 1 n 1 - -1 1 [(q - 1)(r - 1) + (q -1) + 

(r - 1)] = (p - 1, q- 1) I (r- 1). Similarly, (p - 1, r- 1) I q- 1 and 
(q - 1, r - 1) I - 1. Let d = (p - 1, q - 1) = (p - 1, r - 1) = (q - 1, r - 1). 
Define p-1 = dx, q - 1 = dy and r - 1 = dz where x,y, z are relatively prime 
in pairs. Then 

X(n) n - 1 = xyzd d2(xy + yz + xz) + d(x + y + z) 

=1 <d( -+ - + )+ (I+ I+ ) = x < 3d. Y V 7 XY x7 V7 



AN O(n 1/10.89) PRIMALITY TESTING ALGORITHM 265 

Otherwise, 

z >y > x > 3d + 1 =>d( + 4 + 1) + (I + I + I) 
x y z xy xz yzJ 

3d 3 9d2 +3d+ 3 
3d + 1 (3d + 1)2 9d2+6d+ 1 

since d > 1. 
Since p < n'/3 and x < 3d, we know that x < V3n'6. In the case where x > 1, 

the prime factors of x are among the prime factors of n - 1 which are less than 
/nl 1/6. We may find all such small factors in O(n 1/12+e) time by Lemma 1. Any 

such factor must divide p - 1 more often than q - 1 and, thus, we may apply 
Lemmas 3 and 7 to show that only O(n1/12W +e) additional time is needed to 
decide that n is composite (by Step (4)(ii)). 

Thus, we may assume that x = 1. Define reals a1, a2 and /3 so that y = na, 

z = na2, and d = n8. Note that nl+a2+30 = (p - 1)(q - 1)(r - 1) < n so a 1 + a2 

+ 3,/ < 1. We first consider the case when /3 > (2Ve - 1)/(1 + 6Ve). Then 
a1 + a2 < 1 -33 < 4/(1 + 6V ). Since a,1 < a2 we know that a1 < 
2/(1 + 6V'e ). Thus, the prime factors of y are < o(n2/(1+6e)). Since all factors 
of n - 1 of this size can be found in O(n 1/(1+6W )+e) time, we have achieved the 
desired bound for this case. 

If / < (2Ve - 1)/(1 + 6/e ), then 

a,+2,8 < 
a 

2 
+ 1+/3 < 

4Ve 
22 +2/ 

2 1 +6 

and pq < O(n 4 e /(I+ 6)). By arguments similar to those described in the case 
when n has four or more prime factors, this case can be handled in 0((pq)1/4ve +e) 

< 0(n X /(1 +6We)+e) time. 
This completes the analysis of the complexity of the algorithm. We summarize 

our result in the following theorem. 

THEOREM. For sufficiently small - > 0, Algorithm A, decides whether or not any 
integer n is prime in O(n 1/(I + 6e ) + e) < O(n 1/10.89) steps. 

5. Remarks. It is quite likely that the algorithm presented in this paper can be 
improved substantially. In particular, an improved method of dealing with 
Carmichael numbers (very highly structured numbers) would directly lead to an 
improvement in the running time of the algorithm. 

It is also likely that the practical efficiency of the algorithm can be improved 
substantially. Though we have not made an attempt to do so here, such an 
improvement would be of great interest and could lead to a practical algorithm for 
deterministically deciding primality. In particular, Step 5 is very fast asymptotically 
but is prohibitively time consuming in practice. 

One alternate approach to the problem involves the behavior of 
a(nk -1)/(n - 1)q' mod n where a E GF(n k) for k > 2. Several improvements on the 
algorithm can be made on the assumption that nonresidues are no more difficult to 
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find in GF(pk) for k > 2 than they are to find in GF(p). This assumption may well 
be very hard to verify, however. 
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